A non-oscillatory balanced scheme for an idealized tropical climate model Part II: Nonlinear coupling and moisture effects
نویسندگان
چکیده
We use the non-oscillatory balanced numerical scheme developed in Part I to track the dynamics of a dry highly nonlinear barotropic/baroclinic coupled solitary wave, as introduced by Biello and Majda (2004), and of the moisture fronts of Frierson et al. (2004) in the presence of dry gravity waves, a barotropic trade wind, and the beta effect. It is demonstrated that, for the barotropic/baroclinic solitary wave, except for a little numerical dissipation, the scheme utilized here preserves total energy despite the strong interactions and exchange of energy between the baroclinic and barotropic components of the flow. After a short transient period where the numerical solution stays close to the asymptotic predictions, the flow develops small scale eddies and ultimately becomes highly turbulent. It is found here that the interaction of a dry gravity wave with a moisture front can either result in a reflection of a fast moistening front or the pure extinction of the precipitation. The barotropic trade wind stretches the precipitation patches and increases the lifetime of the moisture fronts which decay naturally by the effects of dissipation through precipitation while the Coriolis effect makes the moving precipitation patches disappear and appear at other times and places.
منابع مشابه
A non-oscillatory balanced scheme for an idealized tropical climate model Part I: Algorithm and validation
We propose a non-oscillatory balanced numerical scheme for a simplified tropical climate model with a crude vertical resolution, reduced to the barotropic and the first baroclinic modes. The two modes exchange energy through highly nonlinear interaction terms. We consider a periodic channel domain, oriented zonally and centered around the equator and adopt a fractional stepping–splitting strate...
متن کاملModel Predictive Control of Distributed Energy Resources with Predictive Set-Points for Grid-Connected Operation
This paper proposes an MPC - based (model predictive control) scheme to control active and reactive powers of DERs (distributed energy resources) in a grid - connected mode (either through a bus with its associated loads as a PCC (point of common coupling) or an MG (micro - grid)). DER may be a DG (distributed generation) or an ESS (energy storage system). In the proposed scheme, the set - poin...
متن کاملGait Generation for a Bipedal System By Morris-Lecar Central Pattern Generator
The ability to move in complex environments is one of the most important features of humans and animals. In this work, we exploit a bio-inspired method to generate different gaits in a bipedal locomotion system. We use the 4-cell CPG model developed by Pinto [21]. This model has been established on symmetric coupling between the cells which are responsible for generating oscillatory signals. Th...
متن کاملImpact of CO2-Induced Warming on Hurricane Intensities as Simulated in a Hurricane Model with Ocean Coupling
This study explores how a carbon dioxide (CO2) warming–induced enhancement of hurricane intensity could be altered by the inclusion of hurricane–ocean coupling. Simulations are performed using a coupled version of the Geophysical Fluid Dynamics Laboratory hurricane prediction system in an idealized setting with highly simplified background flow fields. The large-scale atmospheric boundary condi...
متن کاملNon-rotating and rotating radiative-convective equilibrium
Radiative-convective equilibrium (RCE), in which the radiative cooling in the atmosphere is balanced by the convective heating in a horizontally homogeneous environment, is a good starting point for studying tropical convection. It also provides an idealized framework to compare analogous simulations by global climate models (GCMs) which rely on convective parameterizations, and cloud-resolving...
متن کامل